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A Historic and Important  
Societal Debate is underway… 

Public Policy Collision Course 



The Research Value of De-identified Data 
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Misconceptions about HIPAA De-identified Data:  

“It doesn’t work…” “easy, cheap, powerful re-
identification” (Ohm, 2009 “Broken Promises of Privacy”) 

Pre-HIPAA Re-identification Risks {Zip5, Birth date, 
Gender} able to identify 87%?, 63%, 28%? of US 
Population (Sweeney, 2000, Golle, 2006, Sweeney, 2013 ) 

Post-HIPAA Reality: HIPAA compliant de-identification 
provides important privacy protections 

— Safe harbor re-identification risks have been estimated at 
0.04% (4 in 10,000) (Sweeney, NCVHS Testimony, 2007) 

Post-HIPAA Reality: Under HIPAA de-identification 
requirements,  re-identification is expensive and time-
consuming to conduct, requires substantive 
computer/mathematical skills, is rarely successful, and 
usually uncertain as to whether it has actually 
succeeded 
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Misconceptions about HIPAA De-identified Data:  

“It works perfectly and permanently…” 

Reality:  
—Perfect de-identification is not possible. 
—De-identifying does not free data from all 

possible subsequent privacy concerns. 
—Data is never permanently “de-identified”…  

There is no 100% guarantee that de-identified 
data will remain de-identified regardless of 
what you do with it after it is de-identified. 
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The Inconvenient Truth:  
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“De-identification leads to 
information loss which may limit 
the usefulness of the resulting 
health information” (p.8, HHS De-ID Guidance  

                                                                             Nov  26, 2012) 



Balancing Disclosure Risk/Statistical Accuracy 

 Balancing disclosure risks and statistical accuracy is 
essential because some popular de-identification 
methods (e.g. k-anonymity) can unnecessarily, and 
often undetectably, degrade the accuracy of de-
identified data for multivariate statistical analyses or 
data mining (distorting variance-covariance matrixes, 
masking heterogeneous sub-groups which have been 
collapsed in generalization protections) 

 This problem is well-understood by statisticians, but not 
as well recognized and integrated within public policy. 

 Poorly conducted de-identification can lead to “bad 
science” and “bad decisions”.  

 Reference: C. Aggarwal  http://www.vldb2005.org/program/paper/fri/p901-aggarwal.pdf  
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Percent of Regression Coefficients  
which changed Significance:  



If this is what we are going to do to our ability 
to conduct accurate research – then… we 
should all just go home. 

 Although poorly conducted de-identification can distort 
our ability to learn what is true leading to “bad 
science/decisions”, this does not need to be an 
inevitable outcome. 

 Well-conducted de-identification practice always 
carefully considers both the re-identification risk context 
and examines and controls the possible distortion to 
the statistical accuracy and utility of the de-identified 
data to assure de-identified data has been 
appropriately and usefully de-identified. 

 But doing this requires a firm understanding/grounding 
in the extensive body of the statistical disclosure 
control/limitation literature.    
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Data Privacy Concerns are Far Too Important (and Complex) 
to be summed up with Catch Phrases or “Anecdata” 

Eye-catching headlines and twitter-buzz announcing 
“There’s No Such Thing as Anonymous Data” might draw 
the public’s attention to broader and important concerns 
about data privacy in this era of “Big Data”,  

but such statements are essentially meaningless, even 
misleading, for further generalization without consideration 
of the specific de/re-identification contexts -- including the 
precise data details (e.g., number of variables, resolution of 
their coding schemas, special data properties, such as 
spatial/geographic detail, network properties, etc.) de-identification 
methods applied, and associated experimental design for re-
identification attack demonstrations. 

Good Public Policy demands reliable scientific evidence… 
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Unfortunately, de-
identification public 
policy has often 
been driven by 
largely anecdotal 
and limited 
evidence, and re-
identification 
demonstration 
attacks targeted to 
particularly 
vulnerable 
individuals, which 
fail to provide 
reliable evidence 
about real world re-
identification risks 
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“When a re-identification 
attack has been brought to 
life, our assessment of the 

probability of it actually 
being implemented in the 

real-world may 
subconsciously become 
100%, which is highly 
distortive of the true 

risk/benefit calculus that 
we face.” – DB-J 

Precautionary Principle or 
Paralyzing Principle? 



Re-identification Demonstration Attack Summary 

• Publicized attacks have been on data without HIPAA de-identification protection. 
• Many attacks targeted especially vulnerable subgroups and did not use sampling to assure 

representative results. 
• Press reporting often portrays re-identification as broadly achievable, when there isn’t 

reliable evidence supporting this portrayal. 



Re-identification Science Policy Short-comings: 

6 ways in which “Re-identification Science” has (thus far) 
typically failed to best support sound public policies: 
 

1. Attacking only trivially “straw man” de-identified data, 
where modern statistical disclosure control methods 
(like HIPAA) weren’t used. 

2. Targeting only especially vulnerable subpopulations and 
failing to use statistical random samples to provide 
policy-makers with representative re-identification risks 
for the entire population. 

3. Making bad (often worst-case) assumptions and then 
failing to provide evidence to justify assumptions.  

 Corollary: Not designing experiments to show the boundaries 
 where de-identification finally succeeds. 
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Re-identification Science Policy Short-comings: 

Cont’d: 6 ways in which “Re-identification Science” has 
(thus far) typically failed to support sound public policies. 
 

4. Failing to distinguish between sample uniqueness, 
population uniqueness and re-identifiability (i.e., the 
ability to correctly link population unique observations 
to identities). 

5. Failing to fully specify relevant threat models (using 
data intrusion scenarios that account for all of the 
motivations, process steps, and information required to 
successfully complete the re-identification attack for 
the members of the population). 

6. Unrealistic emphasis on absolute “Privacy Guarantees” 
and failure to recognize unavoidable trade-offs between 
data privacy and statistical accuracy/utility. 
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Re-identification Science Can Better Inform Policy/Practice 
 

1. Demonstrate re-identification risks on data where modern statistical 
disclosure control methods have actually been used. 

2. Use proper statistical random samples and scientific study designs in 
order to provide representative risk estimates. 

3. Use ethically-designed re-identification experiments to better 
characterize re-identification risks for quasi-identifiers beyond 
simple demographics   

4. Design experiments to show the boundaries where de-identification 
finally succeeds and provide evidence to justify any data intruder 
knowledge assumptions.  

5. Verify re-identifications and report false-positive rates for supposed 
re-identifications. 

6. Investigate multiple realistic and relevant threats and fully specify 
these re-identification threat models. 

7. Use modern probabilistic uncertainty analyses to examine impact of 
uncertainties in re-identification experiments.    
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 Recommended De-identified Data Use Requirements 

Recipients of De-identified Data should be required to:  
 

1) Not re-identify, or attempt to re-identify, or allow to 
be re-identified, any patients or individuals within the 
data, or their relatives, family or household members. 

2) Not link any other data elements to the data without 
obtaining certification that the data remains de-
identified. 

3) Implement and maintain appropriate data security 
and privacy policies, procedures and associated 
physical, technical and administrative safeguards to 
assure that it is accessed only by authorized personnel 
and will remain de-identified. 

4) Assure that all personnel or parties with access to the 
data agree to abide by all of the foregoing conditions. 
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Comprehensive, Multi-sector Legislative 
Prohibitions Against Data Re-identification 
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Robert Gellman, 2010  
 https://fpf.org/wp-content/uploads/2010/07/The_Deidentification_Dilemma.pdf 

We also need… 



      And… 

Centers of Excellence 
For Combined Graduate 
Training in Statistical 
Disclosure and Privacy 

Computer Science 
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Question 1: Is Y-STR Attack Economically Viable?
   Probably not -- unclear whether it eventually could be. 

Q2: Is Genomic “De-identification” pointless? 
           No, removing State, Grouping YoB would help importantly. 
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Given the inherent extremely large combinatorics of genomic 
data nested within inheritance networks which determine 
how genomic traits (and surnames) are shared with our 
ancestors/descendants, the degree to which such information 
could be meaningfully “de-identified” are non-trivial. 

http://blogs.law.harvard.edu/billofhealth/2013/05/22/re-identification-is-not-the-problem-the-delusion-of-de-identification-is-re-identification-symposium/
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